BIOCHEMISTRY AND BIOPHYSICS

Department Website: https://www.haverford.edu/biochemistry-biophysics

The Concentration in Biochemistry and Biophysics recognizes enduring trends in interdisciplinary science, by establishing in the curriculum a formal program of classroom and laboratory training at the interface between the physical, chemical and biological sciences.

Learning Goals
• Identify, formulate, and solve complex problems at the interface of biology and the physical sciences using state-of-the-art equipment and techniques.
• Apply knowledge of chemistry, biology, physics and mathematics to develop a coherent understanding of biological processes and solve problems in living organisms or in vitro systems derived from biological specimens.
• Learn to search, read and interpret original scientific literature, both for research and for ongoing learning.
• Recognize enduring trends in interdisciplinary science, while navigating the program of classroom and laboratory training at the interface between the physical and biological sciences.
• (For biochemistry) study the importance of biological macromolecules at all levels of the natural sciences, including the cell, the organ, the organism, and larger ecological systems.
• Examine and analyze natural phenomena at the appropriate level(s) (molecular, cellular, organismal and/or ecological), using a variety of methods informed by evolutionary theory.
• Communicate findings (either verbally and/or via written expression) effectively and clearly to diverse audiences.

Concentration Requirements

Biochemistry/Biophysics Core Curriculum (required of all):
• BIOL H200 (Evolution, Genetics and Genomes) and BIOL H201 (Molecules, Cells, and Organisms); (BIOL H200 and BIOL H201 constitute a full-year sequence; prior to 2018-19 these were offered as BIOL H200A and BIOL H200B).
• One semester of BIOL H300 or BIOL H301 (Advanced Lab in Biology) or BIOL H303 (Laboratory in Biochemical Research).
• CHEM H112 or CHEM H114 (Chemical Dynamics).
• One semester mathematics course numbered MATH H118 (Calculus II) or higher.
• PHYS H105 and PHYS H106, or PHYS H101 and PHYS H102 (two semesters of Introductory Physics), or the Bryn Mawr equivalents.

Concentrators typically complete required coursework at the 200-level and higher in participating Haverford departments. One course taken elsewhere may be substituted with prior approval of the relevant department and the Concentration coordinator; students seeking additional flexibility may petition the Concentration Committee in advance regarding their needs and plans.

The advanced interdisciplinary coursework requirements vary by major and desired concentration:

Biology Major with a Biochemistry Concentration:
Biology majors seeking a biochemistry concentration must complete the biochemistry/biophysics core curriculum (see above) as well as the following additional requirements:
• CHEM H111 or CHEM H113 or CHEM H115 (Chemical Structure and Bonding), CHEM H222 and CHEM H225 (Organic Chemistry).
• CHEM H304 (Statistical Thermodynamics and Kinetics) or CHEM H305 (Quantum Chemistry).
• CHEM H301 or CHEM H302 (Laboratory in Chemical Structure and Reactivity) or CHEM H303 (Laboratory in Biochemical Research).
• Two half-semester advanced courses with significant biochemistry content: CHEM H351 (Bioinorganic Chemistry), CHEM H352 (Topics in Biophysical Chemistry), and CHEM H357 (Topics in Bioorganic Chemistry); students may take topics courses multiple times with different topics.
• Two half-semester courses with significant biochemistry content: BIOL H311 (Advanced Genetic Analysis), BIOL H313 (Structure and Function of Macromolecules), BIOL H314 (Biochemistry: Metabolic Basis of Disease and Adaptation), BIOL H316 (Inter- and Intra-Cellular Communication), BIOL H320 (Molecular Microbiology), BIOL H322 (Cell Architecture), BIOL H324 (Photosynthesis), BIOL H326 (Biochemical Adaptations), BIOL H328 (Immunology), BIOL H451 (Molecular Motors and Biological Nano-Machines), BIOL H454 (Advanced Topics in Virology), and BIOL H457 (Topics in Protein Science).

Students may use courses meeting concentration requirements for the biology major in lieu of one semester of BIOL H300/BIOL H301.

**Biology Major with a Biophysics Concentration:**
Biology majors seeking a biophysics concentration must complete the biochemistry/biophysics core curriculum (see above) as well as the following additional requirements:

• MATH H121 (Calculus III) or MATH H216 (Advanced Calculus).
• PHYS H213 (Waves and Optics), PHYS H211 (Laboratory in Electronics, Waves and Optics); half-credit course, and PHYS H301 (Advanced Laboratory in Modern Physics).
• PHYS H214 (Quantum Mechanics) or CHEM H305 (Quantum Chemistry).
• PHYS H303 (Statistical Physics) or CHEM H304 (Statistical Thermodynamics and Kinetics).
• A 300-level course in biophysics approved by the concentration coordinating committee.
• Two half-semester courses with significant biophysics content: BIOL H311 (Advanced Genetic Analysis), BIOL H313 (Structure and Function of Macromolecules), BIOL H314 (Biochemistry: Metabolic Basis of Disease and Adaptation), BIOL H316 (Inter- and Intra-Cellular Communication), BIOL H320 (Molecular Microbiology), BIOL H322 (Cell Architecture), BIOL H324 (Photosynthesis), BIOL H326 (Biochemical Adaptations), BIOL H328 (Immunology), BIOL H451 (Molecular Motors and Biological Nano-Machines), BIOL H454 (Advanced Topics in Virology), and BIOL H457 (Topics in Protein Science).

Students may use courses meeting concentration requirements for the chemistry major in lieu of either CHEM H301 or CHEM H302.

**Chemistry Major with a Biochemistry Area of Concentration:**
Chemistry majors desiring a biochemistry area of concentration must complete the biochemistry/biophysics core curriculum (see above) as well as the following additional requirements:

• Two half-semester courses with significant biochemistry content: CHEM H351 (Bioinorganic Chemistry), CHEM H352 (Topics in Biophysical Chemistry), and CHEM H357 (Topics in Bioorganic Chemistry). Students may take topics courses multiple times with different topics.
• Two half-semester courses with significant biochemistry content: BIOL H311 (Advanced Genetic Analysis), BIOL H313 (Structure and Function of Macromolecules), BIOL H314 (Biochemistry: Metabolic Basis of Disease and Adaptation), BIOL H316 (Inter- and Intra-Cellular Communication), BIOL H320 (Molecular Microbiology), BIOL H322 (Cell Architecture), BIOL H324 (Photosynthesis), BIOL H326 (Biochemical Adaptations), BIOL H328 (Immunology), BIOL H451 (Molecular Motors and Biological Nano-Machines), BIOL H454 (Advanced Topics in Virology), and BIOL H457 (Topics in Protein Science).

**Physics Major with a Biophysics Area of Concentration:**
Physics majors desiring a biophysics area of concentration must complete the biochemistry/biophysics core curriculum (see above) as well as the following additional requirements:

• Two half-semester courses with significant biophysics content: BIOL H311 (Advanced Genetic Analysis), BIOL H313 (Structure and Function of Macromolecules), BIOL H314 (Biochemistry: Metabolic Basis of Disease and Adaptation), BIOL H316 (Inter- and Intra-Cellular Communication), BIOL H320 (Molecular Microbiology), BIOL H322 (Cell Architecture), BIOL H324 (Photosynthesis), BIOL H326 (Biochemical Adaptations), BIOL H328 (Immunology), BIOL H451 (Molecular Motors and Biological Nano-Machines), BIOL H454 (Advanced Topics in Virology), and BIOL H457 (Topics in Protein Science).
Students may use 300-level biology courses meeting concentration requirements for the physics major in lieu of one or two of the six required 300-level physics courses.

**Concentration Coordinating Committee**

**Karin Åkerfeldt**  
John and Barbara Bush Professor of the Natural Sciences; Professor of Chemistry

**Karl Johnson**  
Professor of Biology; Coordinator of Biochemistry and Biophysics

**Suzanne Amador Kane**  
Professor and Chair of Physics and Astronomy (fall)

**Casey Londergan**  
Associate Professor and Chair of Chemistry

**Judith Owen**  
The Elizabeth Ufford Green Professor of Natural Sciences; Professor of Biology

**Robert Scarrow**  
Professor of Chemistry

**Walter Smith**  
The Paul and Sally Bolgiano Professor of Physics; Professor and Chair of Physics and Astronomy (spring)