Modern biology has seen tremendous growth in our ability to understand and compare the structure and function of living organisms at the cellular, molecular and genetic levels, and what were traditionally regarded as many different areas of biology have become integrated, particularly in the research laboratory. Our approach to teaching biology therefore emphasizes unifying principles and research method while offering students the flexibility to customize an integrative program of study tailored to their specific interests. We involve students in the process of discovery in a research-focused curriculum that stresses the experimental method as a teaching tool. Students at all levels of the curriculum frame their own experimental questions and use current research techniques to search for answers. In the junior year students participate in research-focused laboratories (BIOL H300/BIOL H301 “Superlab”) and as seniors they conduct their own laboratory-based, year-long research projects. This research may result in presentations at local and national meetings, and occasionally publications in peer-reviewed journals. Our curricular approach allows students to develop the conceptual tools to both follow and contribute to the rapid advance of knowledge and understanding.

Located in the Marian E. Koshland Integrated Natural Sciences Center (KINSC), the Biology Department maintains close interdisciplinary ties with the Chemistry, Physics, Math, Computer Science and Psychology Departments.

Learning Goals

Students completing a major in biology at Haverford will be able to:

- work both independently and collaboratively;
- understand fundamental concepts in modern biology;
- integrate knowledge and experimental approaches from multiple scientific disciplines such as chemistry, physics, mathematics, and geology;
- read, understand, and critique the primary scientific literature;
- interpret and analyze scientific data;
- design and conduct hypothesis-driven research;
- troubleshoot experimental approaches;
- integrate new knowledge into a framework that advances understanding;
- communicate scientific ideas and concepts, both orally and in writing;
- understand and practice ethical conduct in scientific inquiry.

Haverford’s Institutional Learning Goals are available on the President’s website, at http://hav.to/learninggoals.

Curriculum

Perspectives in Biology

Perspectives in Biology courses without prerequisites are offered at the 100 level for exploration by students interested in learning about biology but not intending to major in the subject. These are appropriate for students from all backgrounds and disciplines and are separate from the major track.

Major

Students who wish to major in biology enter the department in their second year, building on a first-year natural science experience. Students take BIOL H200 and BIOL H201, the year-long sophomore introductory course, followed by their choice of four half-semester lecture courses in the junior year that explore fundamental areas of biology. Juniors also engage in a unique, year-long laboratory course (BIOL H300 and BIOL H301 “Superlab”), in which they employ contemporary techniques to answer open-ended biological questions.

The Senior Research Program is the capstone of the Haverford major in biology. The Biology Department provides every major with the opportunity to work directly with our faculty on original research projects. Four to six students work with each professor in that professor’s area of expertise, be it cell biology, genetics, immunology, microbiology, neurobiology, developmental biology, protein biochemistry or the coevolution of plants and the environment. Senior research can account for as much as half of a student’s senior courses. All seniors present a public talk and poster on their research in their senior year and they write both a research proposal and a final thesis. Students are sometimes co-authors on faculty publications and often travel with them to local and national meetings to present their work. A tradition in the Biology Department, this close research partnership between students and faculty is a distinctive feature of a Haverford education.

Major Requirements

- Both semesters of BIOL H200 and BIOL H201. Successful completion of a one-credit natural science course (which includes a laboratory experience) at Haverford, Bryn Mawr or Swarthmore College is a prerequisite for enrolling in BIOL H200.
• A minimum of a one-credit chemistry course (with associated lab).
• At least one semester of advanced coursework (200 level or higher) in a natural sciences course outside the biology department. Courses crosslisted in biology may not be counted toward this requirement.
• Two semesters of the junior laboratory, BIOL H300 and BIOL H301.
• Four half-semester 300-level advanced topics courses (selected from BIOL H311-H329). Occasionally, an upper-level course from Bryn Mawr or Swarthmore may substitute for one or two of the half-semester lecture courses, but only with the specific permission of the student’s major advisor. Students are encouraged to take additional topics classes beyond the minimum of four to enhance their biology experience.
• One half-semester 450-level seminar course in the Haverford Biology Department (chosen from BIOL H450-H463; no substitutions permitted). Students may take additional seminar courses to enrich their knowledge of the discipline.
• A minimum of two 400-level Senior Research Tutorial credits, generally taken over both semesters of the senior year, including active participation in weekly lab meetings and submission of a notebook and a thesis describing the progress and results of the project. The tutorial may be taken for single or double credit each semester.
• Senior Department Studies, BIOL H499.

In addition to the required courses, the Biology Department strongly recommends a year of physics, a course in probability and statistics, and advanced coursework in another natural science department.

Department policy is to limit study abroad biology major credit to a maximum of two 31X/32X courses and one Superlab quarter (with rare exceptions of a full semester Superlab credit).

Senior Project

The senior thesis is a major component of a year-long research experience that is the capstone of the Biology major at Haverford. The process begins in the junior year, when students and faculty work together to distribute students evenly across all the available Senior Research Tutorials for the following year (each faculty member normally supervises four to six students in all).

During the senior year students enroll in a Senior Research Tutorial (numbered BIOL H401-H411, depending on the faculty mentor) which is taken for a minimum of one credit in each semester of the senior year. The Senior Research Tutorial involves 10 hours of laboratory work per week per credit, and is completed under the guidance of a faculty mentor. Students may elect to increase their commitment to their research project by enrolling in 1.5 or 2 credits of Senior Research per semester, for up to four credits in the senior year. In addition, all seniors must take Senior Departmental Studies (BIOL H499), which is a pass/fail, half-credit course taken for a full year in parallel with their Senior Research. This senior seminar course provides an opportunity for all majors to be trained in lab safety, hear invited seminar speakers, and to present thesis proposals as well as the results of senior research work.

Thesis Content

Fall Semester
In the fall, all senior majors complete at least one credit of Senior Research Tutorial during which they begin an original research project that will be continued throughout the year. In the Senior Research Tutorial, students participate in weekly laboratory meetings, keep a laboratory notebook as a record of their work, and interpret and analyze their data. In the fall semester students write a formal project proposal and also present their proposal as a short talk to the department during Senior Departmental Studies.

Spring Semester
In the spring, all majors complete a second semester of Senior Research Tutorial and participate in Senior Departmental Studies. Students continue the research projects started in the fall under the guidance of their faculty mentor. Senior majors write a final thesis and present a scientific poster describing the results of their research project. They submit their lab notebook as a permanent record of the work they have completed in the lab.

Thesis Preparation (prior to senior year)
Preparation for thesis research begins with the introductory course for biology majors, BIOL H200/BIOL H201, and builds in each course thereafter, so that all of the departmental learning goals are consistently reinforced. For example, all students in laboratory courses (such as BIOL H200/H201 and BIOL H300/H301) work with a lab partner or in small groups so that they learn to work collaboratively. At the same time, students are also called upon to present their work individually and to maintain their own research lab notebooks, so that they learn to work independently and are responsible for all parts of the project. The students participate in directed journal clubs in BIOL H200/H201 and majors in upper-level courses read and critique research papers from the original scientific literature, presenting their analyses to the class.
The BIOL H31x/H32X courses, typically taken during the junior year, are based on current research in biology, with an emphasis on integrating this information into a broader understanding of biological topics. The primary focus in these courses is not simply the information itself but rather on how it was determined experimentally. This emphasis provides the students with the skills needed to understand how research is done.

BIOL H300/BIOL H301, the junior-level laboratory course, is intentionally modeled on the work that students are expected to conduct for their senior research thesis, and can be described as a class-based research experience. The emphasis in this yearlong course, which is required for all Biology majors, includes the acquisition of new research techniques but places greater emphasis on hypothesis—testing, data analysis, experimental troubleshooting, record keeping, and oral and written presentations. The projects in BIOL H300/H301 are designed to be intellectually open-ended; students share results and insights, and work to understand the current literature and to connect their findings to what is already known.

Senior Project Learning Goals
The learning goals for the senior thesis include:

• increasing intellectual independence and initiative.
• developing creativity and rigor in experimental design, execution, and interpretation.
• ensuring reproducibility of experimental results, accurate record keeping, and productivity.
• understanding and participating in collaborative and ethical conduct of research
• learning to present research orally, visually, and in writing.

These are criteria by which the department can assess the students’ maturation as scholars.

Senior Project Assessment
The department has developed criteria for evaluating the research proposal and thesis, as well as a grading rubric that is distributed to students at the start of their senior year (available on the departmental website). Each faculty member plays a role in the assessment of senior work, which consists of:

• faculty supervision of weekly laboratory work that includes maintenance of laboratory notebook and participation in lab meetings.
• formal project proposal, including written proposal, and oral presentation to the department in the fall.
• poster presentation summarizing research results in the spring semester.
• evaluation of written thesis based on set criteria and grading rubric provided to students at start of senior year.

See the Biology Department website for detailed grading guidelines and standards used in evaluating the senior project (PDF download).

Requirements for Honors
The department awards honors in biology based on superior work in major courses.

Interdisciplinary Programs
Many Haverford biology majors participate in academic work that crosses departmental boundaries. The Biology Department contributes to many interdisciplinary programs and has particularly close ties with the following ones:

Environmental Studies Minor
The Environmental Studies minor aims to cultivate in students the capacity to identify and confront key environmental issues through a blend of multiple disciplines, encompassing historical, cultural, economic, political, scientific and ethical modes of inquiry.

Health Studies Minor
The goal of the Health Studies minor is to give greater context to the issues facing health professionals on local, national, and global scales. The structure of this program is intentionally multidisciplinary, bringing scientists together with social science and humanities professors to guide students through the political, cultural and ethical questions that relate to health issues worldwide.

Neuroscience Minor
The Minor in Neuroscience is designed to allow students with any major to pursue interests in behavior and the nervous system across disciplines. Students should consult with any member of the advisory committee in order to declare the minor.

Biochemistry & Biophysics Concentration
The Concentration in Biochemistry and Biophysics recognizes current and undoubtedly enduring trends in interdisciplinary science by establishing in the curriculum a formal program of classroom and laboratory training at the interface between the physical and biological science.

Scientific Computing Concentration
The Concentration in Scientific Computing gives students an opportunity to develop a basic facility with the tools and concepts involved in applying
computation to a scientific problem, and to explore
the specific computational aspects of their own
major disciplines.

Affiliated Programs

4+1 Bioengineering Program with the University of
Pennsylvania
Study for four years at Haverford, then one year
at Penn, and receive a Bachelor of Science from
Haverford and a Master’s in Engineering from Penn.
Haverford is the first liberal arts college in the world
to enter into such an agreement with an Ivy League
engineering program.

4+1 Bioethics Program with the University of
Pennsylvania
Study for four years at Haverford, then one year at
Penn, and receive a Bachelor of Arts or Bachelor of
Science from Haverford and a Master’s in Bioethics
(M.BE.) from Penn’s Bioethics Program in the
Perelman School of Medicine.

Research Opportunities

The Koshland Integrated Natural Sciences Center
is the nucleus of a vital summer research program,
where faculty members from across the sciences
engage students on supervised but independent
research projects. Full-time work in the lab permits
students to make significant contributions to these
studies. Alternatively, many students pursue summer
research off campus and bring their experiences
and insights back to Haverford, further enriching a
diverse curriculum. We encourage all students to
present their summer research work at an annual
interdisciplinary poster session in the fall.

Pre-Health

Students from Haverford who enter medical schools
have graduated with a great variety of majors—
philosophy, Spanish, English and several others of
which the most common are, as might be expected,
biology and chemistry.

Study Abroad

Many biology majors take the opportunity to
participate in study abroad programs during their
junior year. It is possible for students to devote
a semester abroad to studies outside of biology
or to include some study of biology (depending
on the program). Equivalencies for certain major
requirements may be granted by the department to
biology majors participating in study away programs
during the junior year, depending upon the specific
program and coursework undertaken.

Prizes

The department awards three prizes annually:

The Irving Finger Prize in Biology: Established
in 2003 by family, friends, and alumni in memory of
It is awarded to a graduating senior (or seniors) in
biology for outstanding growth and accomplishment
in the major.

The Marian E. Koshland Prize in
Biology: Established in 1997 by biology faculty,
College administrators, and Board members.
The prize is awarded to a graduating senior (or
seniors) who, in the judgment of the department,
demonstrated outstanding performance in senior
research.

The Ariel G. Loewy Prize for Senior Research
in Biology: Established in 2001 in memory of Ariel
G. Loewy, professor of biology from 1953 to 2000.
This prize is given to a graduating senior (or seniors)
in biology whose efforts and accomplishments
incorporate the rigor and diligence of experimental
science.

Facilities

See the departmental web page for a description of
laboratories, equipment and other special facilities
for this program.

Faculty

Jamie Becker
Visiting Assistant Professor of Biology

Robert Fairman
Professor of Biology

David Higgins
Visiting Assistant Professor of Biology

Rachel Hoang
Associate Professor and Chair of Biology

Seol Hee Im
Visiting Assistant Professor of Biology

Roshan Jain
Assistant Professor of Biology

Karl Johnson
Professor of Biology; Coordinator of Biochemistry and
Biophysics

Shirley Lang
Laboratory Instructor

Philip Meneely
Professor Emeritus of Biology

Eric Miller
Assistant Professor of Biology

Judith Owen
The Elizabeth Ufford Green Professor of Natural Sciences; Professor of Biology

Kristen Whalen
Assistant Professor of Biology

Affiliated Faculty

Lou Charkoudian
Associate Professor of Chemistry

Mary Ellen Kelly
Visiting Assistant Professor of Psychology

Jonathan Wilson
Associate Professor and Chair of Environmental Studies

Courses

BIOL H102 PERSPECTIVES IN BIOLOGY: GENETIC ENGINEERING, FARMING, AND FOOD (1.0 Credit)
David Higgins
Division: Natural Science
Domain(s): C: Physical and Natural Processes
An examination of the science behind genetically engineered (GE) foods. The technology will be examined and compared to other plant breeding practices and the potential role of GE crops will be considered in the context of global food security. Does not count towards the Biology major. Crosslisted: Biology, Environmental Studies (Offered: Spring 2020)

BIOL H111 PERSPECTIVES IN BIOLOGY: GLOBAL CHANGE BIOLOGY (1.0 Credit)
Jamie Becker
Division: Natural Science
Domain(s): C: Physical and Natural Processes
An exploration of a current topic in Biology. Foundational concepts will be covered and then built upon through reading and discussion of articles from the primary and popular literatures. Evaluation and critique of what constitutes reliable scientific data for the topic under discussion will also be reviewed. Does not count towards the Biology major. (Offered: Fall 2019)

BIOL H200 EVOLUTION, GENETICS & GENOMICS (1.0 Credit)
Eric Miller, Rachel Hoang, Roshan Jain, Shirley Lang
Division: Natural Science
Domain(s): C: Physical and Natural Processes
Three hours of lecture and one laboratory period per week. A one-year course in cellular and molecular biology, Biology 200 considers the cell as a unit of biological activity. Biology 200A discusses the gene as a storehouse of biological information, the flow and transmission of genetic information, and genomics in the context of evolution, as well as the cellular context in which these processes occur. The laboratory introduces the student to cell and molecular biology, genetics and biochemistry. Enrollment per lab section is limited to 28. Preference for a specific lab section will be given to students preregistering for that lab section; students who do not preregister will be assigned on a space available basis. When two sections of the lecture component are offered one lecture section will be limited to 50. Prerequisite(s): The prerequisite for Biology 200A is successful completion, with a grade of 2.0 or higher, of a one credit Natural Science course (which includes a laboratory experience) at Haverford, Bryn Mawr or Swarthmore, or instructor consent (Offered: Fall 2019)

BIOL H201 MOLECULES, CELLS, & ORGANISMS (1.0 Credit)
Karl Johnson, Robert Fairman, Seol Hee Im, Shirley Lang
Division: Natural Science
Domain(s): C: Physical and Natural Processes
Three hours of lecture and one laboratory period per week. A one-year course in cellular and molecular biology, Biology 200 considers the cell as a unit of biological activity. Biology 200B is an introduction to the major macromolecules of the cell, which includes a discussion of their synthesis and breakdown and leads into a discussion of cellular structures. The laboratory introduces the student to cell and molecular biology and biochemistry. Enrollment per lab section is limited to 28. Preference for a specific lab section will be given to students preregistering for that lab section; students who do not preregister will be assigned on a space available basis. When two sections of the lecture component are offered one lecture section will be limited to 50. Prerequisite(s): BIOL H200 with a grade of 2.0 or higher, or instructor consent (Offered: Spring 2020)

BIOL H202 UNLOCKING KEY CONCEPTS IN BIOLOGY (0.5 Credit)
Roshan Jain
Division: Natural Science
Domain(s): C: Physical and Natural Processes
A course for BIOLH200 students designed to teach the principles and methods of biological investigation. Students are taught how biological hypotheses are identified, developed and tested and how biological data are articulated, analyzed and interpreted. The class meets once a week during
the semester and draws material from current literature, groundbreaking classical experiments and concurrent topics in BIOLH200. Enrollment by invitation from the Department. Course is taken Pass/Fail only. Prerequisite(s): Concurrent enrollment in BIOLH200A and instructor consent

BIOL H217 BEHAVIORAL NEUROSCIENCE (1.0 Credit)

Mary Ellen Kelly

Division: Natural Science

Domain(s): B: Analysis of the Social World; C: Physical and Natural Processes

Interrelations between brain, behavior, and subjective experience. The course introduces students to physiological psychology through consideration of current knowledge about the mechanisms of mind and behavior. Crosslisted: Psychology, Biology Prerequisite(s): Any one of the following or instructor consent: PSYC 100, PSYC B105, BIOL H123, BIOL H124, BIOL H128, BIOL H129, Psychology AP Score 4

Offered: Fall 2019

BIOL H300 ADVANCED LAB IN BIOLOGY SEM 1 (1.0 Credit)

David Higgins, Karl Johnson, Robert Fairman, Seol Hee Im

Division: Natural Science

Domain(s): C: Physical and Natural Processes

One lecture and two laboratory periods per week. An introduction to the application of modern experimental approaches in the study in interesting biological questions. Techniques employed are drawn from: cloning and nucleic acids (DNA and RNA) manipulation, including polymerase chain reaction (PCR) and site-directed mutagenesis; protein expression, purification and characterization, with emphasis on circular dichroism and fluorescence spectroscopy; immunofluorescence, confocal and electron microscopy; and fluorescence-activated cell sorting (FACS) analysis. Preference for a specific lab section will be given to students preregistering for that lab section; students who do not preregister will be assigned on a space available basis. Enrollment in the half-semester module is by consent of instructor only. Crosslisted: Biology, Chemistry Prerequisite(s): Successful completion of BIOL H200A and B with grades of 2.0 or higher, and instructor consent.

Offered: Fall 2019

BIOL H300E ADVANCED LAB IN BIOLOGY SEM 1 (0.5 Credit)

Robert Fairman, Seol Hee Im

Division: Natural Science

Domain(s): C: Physical and Natural Processes

One lecture and two laboratory periods per week. An introduction to the application of modern experimental approaches in the study in interesting biological questions. Techniques employed are drawn from: cloning and nucleic acids (DNA and RNA) manipulation, including polymerase chain reaction (PCR) and site-directed mutagenesis; protein expression, purification and characterization, with emphasis on circular dichroism and fluorescence spectroscopy; immunofluorescence, confocal and electron microscopy; and fluorescence-activated cell sorting (FACS) analysis. Preference for a specific lab section will be given to students preregistering for that lab section; students who do not preregister will be assigned on a space available basis. Enrollment in the half-semester module is by consent of instructor only. Crosslisted: Biology, Chemistry Prerequisite(s): Successful completion of BIOL H200A and B with grades of 2.0 or higher, and instructor consent.

Offered: Fall 2019

BIOL H300D ADVANCED LAB IN BIOLOGY SEM 1 (0.5 Credit)

David Higgins, Karl Johnson, Robert Fairman

Division: Natural Science

Domain(s): C: Physical and Natural Processes

One lecture and two laboratory periods per week. An introduction to the application of modern experimental approaches in the study in interesting biological questions. Techniques employed are drawn from: cloning and nucleic acids (DNA and RNA) manipulation, including polymerase chain reaction (PCR) and site-directed mutagenesis; protein expression, purification and characterization, with emphasis on circular dichroism and fluorescence spectroscopy; immunofluorescence, confocal and electron microscopy; and fluorescence-activated cell sorting (FACS) analysis. Preference for a specific lab section will be given to students preregistering for that lab section; students who do not preregister will be assigned on a space available basis. Crosslisted: Biology, Chemistry Prerequisite(s): BIOL H200 and BIOL H201 with a grade of 2.0 or above, or instructor consent.

Offered: Fall 2019

BIOL H301 ADVANCED LAB IN BIOLOGY SEM 2 (1.0 Credit)

Rachel Hoang, Roshan Jain

Division: Natural Science

Domain(s): C: Physical and Natural Processes

One lecture and two laboratory periods per week. An introduction to the application of modern experimental approaches in the study of interesting biological questions. Techniques employed are drawn from: cloning and nucleic acids (DNA and RNA) manipulation, including polymerase chain reaction (PCR) and site-directed mutagenesis; protein expression, purification and characterization, with emphasis on circular dichroism and fluorescence spectroscopy; immunofluorescence, confocal and electron microscopy; and fluorescence-activated cell sorting (FACS) analysis. Preference for a specific lab section will be given to students preregistering for that lab section; students who do not preregister will be assigned on a space available basis. Enrollment in the half-semester module is by consent of instructor only. Crosslisted: Biology, Chemistry Prerequisite(s): Successful completion of BIOL H200A and B with grades of 2.0 or higher, and instructor consent.

Offered: Fall 2019
reaction (PCR) and site-directed mutagenesis; protein expression, purification and characterization, with emphasis on circular dichroism and fluorescence spectroscopy; immunofluorescence, confocal and electron microscopy; and fluorescence-activated cell sorting (FACS) analysis. Preference for a specific lab section will be given to students preregistering for that lab section; students who do not preregister will be assigned on a space available basis. Crosslisted: Biology, Chemistry Prerequisite(s): BIOL H200 and BIOL H201 with a grade of 2.0 or above, or instructor consent (Offered: Spring 2020)

BIOL H301B ADVANCED LAB IN BIOLOGY SEM 2 (1.0 Credit)
Rachel Hoang, Roshan Jain, Staff
Division: Natural Science
Domain(s): C: Physical and Natural Processes
One lecture and two laboratory periods per week. An introduction to the application of modern experimental approaches in the study of interesting biological questions. Techniques employed are drawn from: cloning and nucleic acids (DNA and RNA) manipulation, including polymerase chain reaction (PCR) and site-directed mutagenesis; protein expression, purification and characterization, with emphasis on circular dichroism and fluorescence spectroscopy; immunofluorescence, confocal and electron microscopy; and fluorescence-activated cell sorting (FACS) analysis. Preference for a specific lab section will be given to students preregistering for that lab section; students who do not preregister will be assigned on a space available basis. Crosslisted: Biology, Chemistry Prerequisite(s): BIOL H200 and BIOL H201 with a grade of 2.0 or above, or instructor consent (Offered: Spring 2020)

BIOL H303 LABORATORY IN BIOCHEMICAL RESEARCH (1.0 Credit)
Eric Miller, Lou Charkoudian
Division: Natural Science
Domain(s): C: Physical and Natural Processes
An introduction to the laboratory concepts and techniques at the chemistry-biology interface including: molecular cloning, protein purification, biophysical spectroscopy, molecular modeling, and biochemical assays. Crosslisted: Chemistry, Biology Prerequisite(s): BIOL 300A and CHEM 301, or instructor consent (Offered: Fall 2019)

BIOL H311 ADVANCED GENETIC ANALYSIS (0.5 Credit)
David Higgins
Division: Natural Science
The molecular mechanisms governing the transmission, mutation and expression of genes. Particular emphasis is placed on the use of experimental genetic methods to analyze other areas of biology. Crosslisted: Biology, Health Studies Prerequisite(s): BIOL H200 and BIOL H201 with a grade of 2.0 or above, or instructor consent

BIOL H312 DEVELOPMENT & EVOLUTION (0.5 Credit)
Rachel Hoang
Division: Natural Science
Domain(s): C: Physical and Natural Processes
This course introduces important links between developmental and evolutionary biology. Genetic changes that produce variations between organisms are an important aspect of evolutionary change. Since development can be viewed as a process that links genetic information to final form of an organism, the fields of development and evolution clearly impact one another. We will look at model developmental systems where mechanisms have been elucidated in remarkable detail. We will then look beyond model systems to comparative studies in a range of organisms, considering how these provide insight into evolutionary mechanisms, and how underlying differences in development may account for the differences we see between organisms. Prerequisite(s): BIOL H200A and B with a grade of 2.0 or above, or instructor consent (Offered: Spring 2020)

BIOL H313 STRUCTURE AND FUNCTION OF MACROMOLECULES (0.5 Credit)
Robert Fairman
Division: Natural Science
Domain(s): C: Physical and Natural Processes
A study of the structure and function of proteins, including enzymes, assembly systems and proteins involved in interactions with nucleic acids and membranes. Prerequisite(s): BIOL H200 and BIOL H201 with a grade of 2.0 or above, CHEM H221 or equivalent to be taken previously or concurrently, or instructor consent (Offered: Spring 2020)
and molecules can control simple and complex behaviors in model organisms and humans. We will also explore how disrupting these genes, molecules, and processes can lead to neuropsychiatric and neurodegenerative diseases. Prerequisite(s): BIOL H200 and BIOL H201 with a grade of 2.0 or above, or instructor consent
(Offered: Spring 2020)

BIOL H320 MOLECULAR MICROBIOLOGY (0.5 Credit)
Eric Miller
Division: Natural Science
A study of prokaryotic biology with emphasis on cell structure, gene organization and expression, which will incorporate selected readings from the primary literature. Topics include the bacterial and viral cell structure, the genetics of bacteria and bacteriophage, gene regulation, horizontal gene transfer and microbial genomics. The course will be taught via lecture, class presentation and discussion, and workshops. Prerequisite(s): BIOL H200A and B with a grade of 2.0 or above, or instructor consent
(Offered: Spring 2020)

BIOL H321 THE PLANT CELL IN DEVELOPMENT (0.5 Credit)
David Higgins
Division: Natural Science
Domain(s): C: Physical and Natural Processes
The application of concepts in cell biology, physiology, and molecular genetics toward understanding the biology of plants. Topics include the genetics of flowering plant development, the biochemical regulation of plant growth, and how plants respond to changes and threats in their environment.
(Offered: Fall 2019)

BIOL H322 CELL ARCHITECTURE (0.5 Credit)
Karl Johnson
Division: Natural Science
An examination of cellular structure and function. Topics include the eukaryotic cytoskeleton and endomembrane systems, with particular emphasis upon the dynamic qualities of living cells. Prerequisite(s): BIOL H200 and BIOL H201 with a grade of 2.0 or above, or instructor consent

BIOL H325 MOLECULAR VIROLOGY (0.5 Credit)
Eric Miller
Division: Natural Science
Domain(s): C: Physical and Natural Processes
This course will focus on the study of virus structure, genome organization, replication, and interactions with the host. Many different families of viruses will be highlighted, with an emphasis on those that infect humans, and specific viruses, especially those of clinical importance, will be incorporated as models within each family. Prerequisite(s): BIOL H200 and BIOL H201 with a grade of 2.0 or above, or instructor consent

BIOL H326 BIOCHEMICAL ADAPTATIONS (0.5 Credit)
Jamie Becker
Division: Natural Science
Domain(s): C: Physical and Natural Processes
This course will cover the diversity of physiological mechanisms and biochemical strategies that help organisms, from microbes to mammals, adapt to various environmental conditions. Emphasis put on biochemical evolution in response to changing environmental conditions. Crosslisted: Biology, Environmental Studies Prerequisite(s): BIOL H200A and B with a grade of 2.0 or above, or instructor consent
(Offered: Fall 2019)

BIOL H328 IMMUNOLOGY (0.5 Credit)
Judith Owen
Division: Natural Science
Domain(s): C: Physical and Natural Processes
This course will provide an introduction to the rapidly expanding discipline of immunology. Students will learn about the molecular and cellular basis of the immune response through the study of the genetics and biochemistry of antigen receptors, the biochemistry of immune cell activation, the cell physiology of the immune system, immune memory, immune tolerance induction and immune-mediated cell death. Prerequisite(s): BIOL H200 and BIOL H201 with a grade of 2.0 or above, or instructor consent.
(Offered: Fall 2019)

BIOL H329 COMPARATIVE CELL BIOLOGY OF INVERTEBRATES (0.5 Credit)
Division: Natural Science
Domain(s): C: Physical and Natural Processes
Invertebrates comprise over 90% of all animal life, and are found in every ecosystem on Earth. To this extent, invertebrates exhibit a diverse array of adaptations to enable functioning in various habitats. In this upper-level biology course, we will explore the cellular basis of these adaptations using a systems-level approach, with topics including immunity, endocrinology, excretion, reproduction, cellular respiration, integument, and others. Prerequisite(s): BIOL H200 and BIOL H201, grade 2.0 or above

BIOL H357 ADVANCED TOPICS IN PROTEIN SCIENCE (0.5 Credit)
Robert Fairman
Division: Natural Science
In the last decade great strides have been made in identifying protein misfolding and aggregation in a
wide variety of debilitating human diseases. It is now becoming clear that many dementias and other signs of "old age" can now be attributed to these diseases, leading to a decrease in the quality of life. Thus, approaches to treat these diseases are of paramount importance for quality of life issues. In order to develop treatments, a molecular understanding of these diseases is critical. The underlying biophysical basis for protein misfolding and aggregation is now largely understood and involves a common structural motif called the cross-b-sheet fibril. This course will focus on a set of diseases for which we now know quite a lot about the chemistry, molecular biology, and cell biology that underlies the misfolding behavior of the protein in question. We will look at Alzheimer’s disease, prion infectious disease, Huntington’s disease, Parkinson’s disease, and ALS or Lou Gehrig’s disease. While the course will focus on the primary literature that discusses the protein aggregation problem, other disciplinary areas such as genetics, cell biology, animal model systems, and clinical biology may be introduced as appropriate.

BIOL H380 INDEPENDENT STUDY FOR JUNIORS (0.5 Credit)
Staff
Division: Natural Science
Students may receive credit for approved study and/or work in the laboratory under the supervision of a professor. This work may take the form of a guided series of readings with associated written work, or a supervised laboratory research project with a final write-up and presentation. Prerequisite(s): Instructor consent
(Offered: Fall 2019, Spring 2020)

BIOL H400 SENIOR RESEARCH TUTORIAL AT OFF-CAMPUS RESEARCH LABS (0.5 Credit)
Philip Meneely
Division: Natural Science
Research in an area of cell, or molecular biology is conducted under the supervision of a member of a nearby research laboratory who has volunteered time and space for a Haverford student. All students enrolled in Biology 410 must have designated on-campus and off-campus supervisors. Prerequisite(s): BIOL H300A and B with a grade of 2.0 or above and instructor consent.

BIOL H402 SENIOR RESEARCH TUTORIAL IN GENETICS AND MEIOSIS (0.5 Credit)
David Higgins
Division: Natural Science
The principles and mechanisms by which the chromosome number is reduced and segregated during the production of gametes are studied in the nematode Caenorhabditis elegans. Genetic, molecular, and microscopic methods are used to isolate and examine mutant strains which fail to execute meiosis properly. Laboratory work is supplemented by readings from the current literature on meiosis and C. elegans. (Offered: Fall 2019)

BIOL H403 SENIOR RESEARCH TUTORIAL IN PROTEIN FOLDING AND DESIGN (0.5 Credit)
Robert Fairman
Division: Natural Science
The laboratory focuses on protein folding and design, with a particular emphasis on the use of proteins in nanoscience. Students will have the opportunity to apply chemical and genetic approaches to the synthesis of proteins for folding and design studies. Such proteins are characterized in the laboratory using biophysical methods (such as circular dichroism spectroscopy, analytical ultracentrifugation, and atomic force microscopy). Functional and structural approaches can also be applied as necessary to answer specific questions relating to protein science. Exploration of the primary literature and various opportunities to hone scientific communication skills will supplement lab work. Prerequisite(s): Instructor consent
(Offered: Fall 2019)

BIOL H404 SENIOR RESEARCH TUTORIAL IN MOLECULAR MICROBIOLOGY (0.5 Credit)
Eric Miller
Division: Natural Science
Microbes live and grow in environments that include other microbes; how do these microbe-microbe interactions change microbial genomes (through evolution) and change the composition of communities (through ecological dynamics)? Laboratory work will focus on pathogen and commensal Streptococcus species to investigate how cells communicate with each other, how they exchange genes, and how they produce toxins that modify their surrounding community. Bioinformatic approaches will examine evolution within and between bacteria species, while computational approaches will investigate fundamental questions in evolutionary biology. Exploration of the primary literature and various opportunities to hone scientific communication skills will supplement lab work. Prerequisite(s): Instructor consent.
(Offered: Fall 2019)

BIOL H405 SENIOR RESEARCH TUTORIAL IN MARINE NATURAL PRODUCT DRUG DISCOVERY (0.5 Credit)
Kristen Whalen
Division: Natural Science
Marine organisms are important producers of substances useful for treatment of human diseases. Students will integrate ecological and evolutionary
theories, cellular physiology, and natural-product chemistry to guide discovery of new compounds with beneficial properties. Exploration of the primary literature and various opportunities to hone scientific communication skills will supplement lab work. Prerequisite(s): Instructor consent
(Offered: Spring 2020)

BIOL H406 SENIOR RESEARCH TUTORIAL IN DEVELOPMENTAL BIOLOGY AND EVOLUTION (1.0 Credit)
Rachel Hoang

Division: Natural Science
Students develop their own lab research projects in a sub-field of cell or molecular biology. Exploration of the primary literature and various opportunities to hone scientific communication skills will supplement lab work. Prerequisite(s): Instructor consent
(Offered: Spring 2020)

BIOL H407 SENIOR RESEARCH TUTORIAL IN BIOARCHITECTURE (0.5 Credit)
Karl Johnson

Division: Natural Science
Studies of structure in living systems and applications in nanotechnology. Approaches employed include genetic analysis, biochemistry, biophysics, molecular biology, microscopy and imaging, bioengineering and synthetic biology. Exploration of the primary literature and various opportunities to hone scientific communication skills will supplement lab work. Prerequisite(s): Instructor consent
(Offered: Fall 2019)

BIOL H408 SENIOR RESEARCH TUTORIAL IN PLANT BIOLOGY AND EVOLUTION (0.5 Credit)
Jonathan Wilson

Division: Natural Science
Plants are an important interface between biology and the environment, and the study of plants' evolutionary history illuminates this interaction. This course will focus on the physiology and evolution of living and extinct plants. Techniques employed include anatomical studies of living and fossil plant tissues; imaging and quantitative investigation of plant structure; and the collection and analysis of fossil plant material. Exploration of the primary literature and various opportunities to hone scientific communication skills will supplement lab work. Prerequisite(s): Instructor consent
(Offered: Fall 2019)

BIOL H409 SENIOR RESEARCH TUTORIAL IN MOLECULAR NEUROBIOLOGY (0.5 Credit)
Roshan Jain

Division: Natural Science
In this course we will use the zebrafish model system to ask “how do genes control behavior?” at multiple complementary levels of analysis: molecular genetics, imaging of neural circuit development and function, and high-throughput behavioral approaches. Students will use established genetic tools and behavioral assays, as well as develop new methods to probe the underlying control of decision-making, learning & memory, motor control, anxiety, and more. Exploration of the primary literature and various opportunities to hone scientific communication skills will supplement lab work. Prerequisite(s): Instructor consent
(Offered: Fall 2019)

BIOL H411 SENIOR RESEARCH TUTORIAL IN BIOLOGICAL IMPACTS OF CLIMATE CHANGE (0.5 Credit)
Staff

Division: Natural Science
The impacts of global change driven by human activities are manifest across the planet; this course will explore the impacts of these changes at the cellular and organismal levels using invertebrate models including corals and sea anemones. Prerequisite(s): Bio300/Bio301 or equivalent

BIOL H416 SENIOR RESEARCH TUTORIAL IN BIOLOGY (0.5 Credit)
Seol Hee Im

Division: Natural Science
(Offered: Fall 2019)

BIOL H450 ADVANCED TOPICS IN BIOLOGY (0.5 Credit)
Staff

Division: Natural Science
A seminar course exploring the primary literature in a specialized area of cell and molecular biology. Students will read current and historically important original papers as well as pertinent review articles. Oral presentations and written work provide the opportunity for students to demonstrate their ability to critically evaluate current literature in a sub-field of their major discipline. Prerequisite(s): BIOL H300 and BIOL H301 with a grade of 2.0 or above, or instructor consent
(Offered: Spring 2020)

BIOL H451 MOLECULAR MOTORS & BIOLOGICAL NANO-MACHINES (0.5 Credit)
Karl Johnson

Division: Humanities
The world of the cell contains a rich array of molecular machinery that carries out life’s dynamic processes. Interdisciplinary studies of these mechanisms employing a variety of biological, chemical and physical approaches are revealing a wealth of detail spanning from visible phenomenon to the scale of atoms and molecules. Extensive
reading of the primary literature will be used as a basis for student-led discussions. Topics will be selected from a list including viral assembly, cellular clocks, mechanoenzyme engines, biosynthetic machinery and the assembly and regulation of cytoskeletal arrays. These systems provide novel insights into how work is accomplished (and regulated) in a nano-scale environment and serve as models for the development of nanotechnologies for science and medicine. Prerequisite(s): BIOL H300 and BIOL H301 with a grade of 2.0 or above, or instructor consent

BIOL H452 CELLULAR IMMUNOLOGY (0.5 Credit)
Judith Owen
Division: Natural Science
Topics include description and classification of the cells and tissues of the immune system; cell collaboration in the immune response; transplantation antigens and their role in graft rejection and recognition of virally-infected cells; immune tolerance; lymphokines. There will be student presentations of articles in the original immunological literature, followed by critical discussion. Prerequisite(s): BIOL H300A and B with a grade of 2.0 or above, or instructor consent. Enrollment limited: 15 students. *(Offered: Fall 2019)*

BIOL H453 ADV TOPICS IN NEUROBIOLOGY: NEUROBIOLOGY OF AGING (0.5 Credit)
Seol Hee Im
Division: Natural Science
This course will examine age-related changes in the CNS with a focus on normal aging. A major theme of the course will be age-related changes in neuroplasticity focusing on both neuronal and non-neuronal contributors. Throughout the course we will distinguish between normal and pathological aging. The course will also emphasize unique issues inherent to the study of human aging and discuss the various vertebrate and invertebrate models utilized by ‘aging’ researchers. The course will consist of student-led presentations of primary research articles related to a specific topic under discussion that week. Prerequisite: Biol 309 or consent. *(Offered: Fall 2019)*

BIOL H456 ADVANCED TOPICS IN BIOLOGY OF MARINE LIFE (0.5 Credit)
Jamie Becker
Division: Natural Science
Exploration of marine metazoan evolution through the lens of behavioral, morphological, biochemical, and physiological adaptations to various ocean regimes. Readings from primary literature will cover physio-chemical properties of seawater, abiotic/biotic organismal interactions, symbiosis, energy production, human impacts, and phylogenetic relationships. Crosslisted: Biology, Environmental Studies Prerequisite(s): BIOL H300 and BIOL H301 with a grade of 2.0 or above, or instructor consent *(Offered: Fall 2019)*

BIOL H480 INDEPENDENT STUDY FOR SENIORS (0.5 Credit)
Robert Fairman, Staff
Division: Natural Science
Students may receive credit for approved study and/or work in the laboratory under the supervision of a professor. This work may take the form of a guided series of readings with associated written work, or a supervised laboratory research project with a final write-up and presentation. Prerequisite(s): Instructor consent

BIOL H499 SENIOR DEPARTMENT STUDIES (0.5 Credit)
Karl Johnson
Division: Natural Science
Participation in the department's seminar series; attendance at seminars by visiting speakers; senior seminar meetings, consisting of presentation and discussion of research plans and research results by students; and class activities related to the senior year in biology. Prerequisite(s): Department consent *(Offered: Fall 2019, Spring 2020)*