
Computer Science 1

COMPUTER SCIENCE
Department Website:
https://www.haverford.edu/computer-science

Computer science is the representation and
manipulation of information; it is the study of the
theory, analysis, design, and implementation of the
data structures that represent information and the
algorithms that transform them. Computer science
is interdisciplinary, with roots in mathematics,
physics, and engineering, and with applications in
virtually every academic discipline and professional
enterprise.

Computer science at Haverford College covers these
fundamental concepts, with emphasis on depth
of thought, clarity of expression and attention to
ethical impact. This approach is consistent with the
principles of scientific education in the liberal arts.
Our aim is to provide students with a base of skills
and capabilities that support a wide variety of post-
graduation goals, rather than to follow short-term
fashions and fluctuations in computer hardware and
software.

Learning Goals
Each student in computer science will be able to:

• Realize their full ability to think deeply.
This involves mastering discipline-specific
concepts such as abstraction, correctness, and
complexity, and recognizing their broad and deep
applications, both theoretically and practically, in
new contexts.
• Identify the role of abstraction in a

computational problem situation; for example,
distinguish a general problem from a specific
problem instance, or understand the mapping
between an abstract data type (ADT) and a
given representation of that ADT.

• Develop original, correct solutions
demonstrating an appropriate level of
abstraction, using two or more design
techniques specific to the field.

• Express a general solution in an appropriate
programming language.

• Analyze and compare the efficiency of
alternative solutions, both quantitatively and
qualitatively.

• Increase confidence in a solution through a
variety of approaches, including code review,
testing, and mathematical reasoning.

• Communicate their thinking clearly and
effectively. This involves taking a discovered
or developed solution (or a given problem
definition, etc.) and sharing that solution with

peers, managers, clients, and other professionals,
in a complete and persuasive manner, and with
appropriate use of vocabulary and other tools
(e.g., charts, proofs, demonstrations).

• Identify, interpret and evaluate the
theoretical, practical, and ethical
implications of their work in the field.
This work is most easily identified as software,
but other results might be papers written and
published, projects chosen over others ignored,
and even questions raised during the software
development process.

Haverford’s Institutional Learning Goals are
available on the President’s website, at http://hav.to/
learninggoals.

Curriculum
Computer science offers:

• a major.
• a concentration for mathematics majors.
• a minor.

NB: The concentration will not be available
to students admitted for the fall of 2019 and
beyond; for prior classes, these programs
will remain available on an "if space permits"
basis.

Computer science also contributes substantially to
the Concentration in Scientific Computing. More
information on this concentration can be found on
the program’s website (https://www.haverford.edu/
scientific-computing) or catalog entry.

The major in computer science is designed for
students who wish to explore fundamental questions
about computation and the role of computation in
society. As part of this exploration, we provide many
opportunities for students to design, implement, and
analyze algorithms and data structures, and develop
a larger-scale hardware/software system over the
course of multiple semesters. These opportunities
include both individual projects and group work, and
provide experience with a variety of programming
languages and with computer hardware. The senior
experience, and the final projects in many classes,
provide opportunities for students to explore their
own interests in computer science.

Major Requirements
The major program covers the foundations of
the discipline and provides a range of elective
opportunities. While the computer science major
is inspired by guidance from existing professional
societies in computing, it is uniquely “Haverfordian”

https://www.haverford.edu/computer-science/
http://hav.to/learninggoals/
http://hav.to/learninggoals/

2 Computer Science

in its emphasis on a collaborative approach to a
rigorous field of inquiry.

Requirements are:

• Introduction: CMSC H105 and CMSC H106,
or CMSC H107, or Bryn Mawr equivalents

• A 200-level + 300-level sequence in each of the
three tracks, which would include the following
courses:
• theory: CMSC H231 followed by

either CMSC H340 or CMSC H345
• systems: (CMSC H240 or CMSC H251) +

CMSC H356, or (CMSC B223 or CMSC H251) +
CMSC H350, or (CMSC B223 or CMSC H251) +
CMSC B355

• applications: CMSC H260 followed by
either CMSC H325 or CMSC H360 or
CMSC H364

• Electives (two courses): one CMSC course at the
200+ level, one CMSC course at the 300+ level

• Thesis (one course): CMSC H399

A maximum of two courses for the major can be
transferred from outside the Quaker Consortium;
the introductory sequence must be taken at the
Bi-Co, the 200 level core and two of the three 300
level requirements, must be taken within the Quaker
Consortium.

Requests for exception must be pre-approved by the
Chair of the Department.

Senior Thesis
The senior thesis in computer science is a capstone
experience under the guidance of a faculty member.
 Students complete a thorough literature review in
the initial term, and can continue with a research
project into the subsequent term. Oral, poster and
written presentations are required. This experience
can include original work, but it must demonstrate
deep thinking and an original exposition of an
advanced topic.

Students are required to enroll in a one-credit senior
seminar course in the Fall term to ensure that they
successfully complete this graduation requirement.
There is a series of class activities and deadlines
to help keep students on track for completing their
thesis. In the fall semester, these include: the advisor
selection process; submitting the topic proposal;
completing the literature review; and the public
poster presentation. In the optional spring semester,
these include: implementing their project proposed
in the previous term; completing a rough draft of
their thesis; rehearsing their oral presentations;
submitting the final thesis document; and giving
their oral presentation. A second reader provides

feedback periodically to the student and their advisor
as to whether progress is satisfactory.

A detailed schedule is provided to all students in the
seminar at the beginning of the year.

Senior Project Learning Goals
The thesis work culminates in the writing and
oral presentation of a paper. The student must
also demonstrate the research skills required to
produce this paper, in accordance with departmental
deadlines.

An undergraduate senior paper may or may not
include original research, but must present an in-
depth exploration of a topic in computer science
(with particular focus on understanding and
evaluating some element of the computer science
literature). The paper should demonstrate the
student’s ability to apply, in a new context, the
fundamental themes and objectives that connect all
computer science classes, such as:

• separating a problem definition from its solution.
• describing clearly a proposed solution (typically

with examples).
• understanding the correctness and applicability of

a proposed solution.
• comparing several proposed solutions in terms of

clarity, resource requirements, etc.

It is common for the thesis to center on a particular
algorithm or computing system, and present the
correctness and/or computational complexity
thereof. However, this is not required. Students have
successfully pursued other topics, such as human-
computer interaction. The one core requirement is
that the student demonstrates the ability to think
deeply and communicate clearly about a computer
science topic beyond the depth covered in classes.

The written thesis often resembles a review article,
which explores in depth a collection of primary
source articles from a single research group, or
a survey article, which compares primary source
articles from different origins.

The oral presentation is given after the thesis has
been completed, though preliminary presentations
are often also given as practice (and for formative
assessment) during the year. The presentation is not
graded, although all students are required to give
one.

The learning goals for the research that goes into the
thesis experience are as follows:

Aspirational (for the best students):

A substantial written contribution that demonstrates
original thinking and/or insight about a research area

Computer Science 3

inside computer science, under the supervision of a
faculty member. This should include a full literature
review, appropriate replication of existing work, and
either:

• a clear hypothesis (model), validation (proof/
experiments), and analysis; or

• original expository work, including the extension
of a proof, or a new proof of an existing theorem.

• Since such theses include original material, they
may constitute part of a publication (typically
a joint publication with the advisor). However,
publication is not required.

Achievable (for most students):

A confirmation and reiteration of existing work
with an incremental contribution. Specifically, this
includes a full literature review and either:

• a good and complete confirmation of an existing
experiment on new data, including a good
analysis; or

• an exposition of non-trivial graduate-level
published work, including an existing proof or
deep explanation of its extension/applicability (or
its lack of extension) to other related concepts.

Required (of all students):

A non-trivial literature review/exposition of existing
graduate-level published work, specifically:

The introductory material must be:

• readable by someone who has understood
only the core computer science undergraduate
material (e.g., programming languages, hardware,
theory, algorithms, and at least one intensive
systems course such as compilers or operating
systems).

• detailed enough to be clear to someone within the
field.

The discussion of related work should:

• include all the important related/foundational
work.

• clearly identify what problem is being addressed
by each work (possibly one statement of this for
many/all the works).

• clearly state the basic approach being taken.
• explain how each paper supports/evaluates

its own results (proof/empirical-study/ad-hoc
argument).

• make clear how this work relates to the thesis
itself.

• in at least one case, really address the details of
how the approach works (possibly several such

discussions will be needed to address the point
above).

Senior Thesis Assessment
The grade is approximately 75% based on the work
done under the supervision of the faculty advisor and
about 25% based on meeting the deadlines of and
participating in the senior seminar, including the fall
poster and spring presentation.

The senior paper is primarily assessed by the
student’s advisor. Usually one or more other
members of the department also read the paper
and provide feedback for the student and advisor.
If the student has a separate subject-matter advisor
at another institution, that advisor is consulted
during the grading of the paper if at all possible. All
faculty involved in the thesis (and many students)
are typically in attendance for the oral presentation.

The grade for the senior experience is assigned by
the advisor, based on the quality of the student’s
written paper (judged in terms of illustrating mastery
of the learning objectives relevant to the chosen
topic), on participation in the oral presentation, and
on the work habits illustrated during the year’s work.

After thorough discussion by the Department, a
student’s grade on the thesis will reflect how closely
they have met the qualitative goals stated above.
Specifically:

• 4.0: meets aspirational goals stated above.
• 3.0: meets achievable goals stated above.
• 2.0: meets required goals stated above.

All students should reach at least a 2.0 level of work
on the material they submit by the end of the fall
semester, and the faculty will certify students as
having achieved this level (or not) in January.

In addition to submitting the written thesis
document, students must also complete the assigned
presentation elements, which typically include a
December poster presentation of the thesis topic
and scope, and the final oral presentation of the
thesis. These presentations are graded on evidence
of preparation and on participation (i.e. showing up
on time for one’s own presentation, attending the
rehearsals of a few others, and providing feedback
and/or asking questions). Faculty will provide
informal feedback to the presenters on speaking
style, professionalism, diction/grammar, poise, etc.,
but these elements are not included in the grade.

The Computer Science minor requirements follow the
same philosophy and structure as the major:

4 Computer Science

a. the introductory sequence
b. breadth: a 200-level course in each element of the

field (theory, systems, and applications)
c. depth: one year-long sequence (200-level

into 300-level) in either theory, systems, or
applications

Minor Requirements
• CMSC H105 Introduction to Computer Science or

CMSC H107 or Bryn Mawr CMSC B113.
• CMSC H106 Introduction to Data Structures or

CMSC H107 or Bryn Mawr CMSC B151.
• CMSC H231 Discrete Mathematics

• Students with strong backgrounds in
mathematics and prior knowledge of the topics
covered in CMSC H231 may wish to seek
instructor permission to place into CMSC H340
/CMSC H345 without prior completion of
CMSC H231—in this case, the student may
complete the requirements for the minor with
another course covering discrete mathematics,
from the following list: MATH H210 (Linear
Optimization), MATH H394 (Logic), MATH H394
(Cryptography), MATH H395 (Combinatorics),
or STAT H203, STAT H218, STAT H286, or
STAT H396.

• CMSC H251 Principles of Computing Systems
• Students wishing to continue to CMSC B355

may substitute CMSC B223 Systems
Programming

• Students not taking a 35X course may
substitute CMSC H240 Principles of Computer
Organization or CMSC H245 Principles of
Programming Languages

• CMSC H260 Foundations of Data Science
• One 300-level core course from the following list

• CMSC H340 Analysis of Algorithms
• CMSC H345 Theory of Computation
• CMSC H350 Compiler Design
• CMSC B355 Operating Systems
• CMSC H356 Concurrency and Co-Design in

Operating Systems
• CMSC H325 Computation Linguistics
• CMSC H360 Machine Learning

Concentration Requirements
The Computer Science Department supports the
Concentration in Scientific Computing, available
to a variety of majors (https://www.haverford.edu/
scientific-computing), and provides a computer
science concentration specific to mathematics
majors.

Computer Science Concentration for Mathematics Majors
Requirements
NB: This concentration will not be available to students admitted for
the fall of 2019 and beyond; for prior classes, these programs will
remain available on an "if space permits" basis.
• CMSC H105 (Introduction to Computer Science)

and CMSC H106 (Introduction to Data Structures),
or CMSC H107.

• Either CMSC H240 (Principles of Computer
Organization) or CMSC H245 (Principles of
Programming Languages).

• Either CMSC H340 (Analysis of Algorithms) or
CMSC H345 (Theory of Computation).

• One cross-listed MATH/CMSC course (Note that
CMSC H231 meets this requirement and is the
prerequisite for CMSC H340 and CMSC H345.)

• One additional 300-level computer science course.

Related Concentration
Concentration in Scientific Computing
Computation is the object of study for the
computer science major and minor; computation
is also an important tool with which to study
many other disciplines. The Concentration in
Scientific Computing focuses on the application of
computational techniques in other natural and social
sciences.

For more information about the concentration,
please see the program’s catalog entry or website.

Affiliated Program
Engineering
Computer science majors may pursue various
engineering disciplines via our partnerships with
the University of Pennsylvania and CalTech. More
information on this partnership can be found on the
Engineering website.

Study Away
A maximum of two courses for the major can
be transferred from outside the Bi-Co, and the
introductory sequence, CMSC H240, CMSC H245, and
either CMSC H340 or CMSC H345, must be taken at
the Bi-Co.

Requests for exception to this policy must be pre-
approved by the Chair of the Department.

Facilities
Information on all hardware and software resources
for the programs in computer science may be found
on the departmental website.

Affiliated Faculty
Jane Chandlee

https://catalog.haverford.edu/programs/scientific-computing/
https://www.haverford.edu/scientific-computing/
https://www.haverford.edu/engineering/

Computer Science 5

Associate Professor of Linguistics (TriCo)

John Dougherty
Associate Professor and Chair of Computer Science

Rebecca Everett
Associate Professor of Mathematics and Statistics

Sorelle Friedler
The Shibulal Family Computer Science Professor;
Professor of Computer Science

Alvin Grissom
Associate Professor of Computer Science

Dakotah Lambert
Visiting Assistant Professor of Computer Science

Suzanne Lindell
Amanuensis

Steven Lindell
Professor of Computer Science

David Lippel
Visiting Assistant Professor of Mathematics and
Statistics

Robert Manning
Professor of Mathematics and Statistics; William
H. and Johanna A. Harris Chair of Computational
Science; Chair of Mathematics and Statistics

Sara Mathieson
Associate Professor of Computer Science;
Coordinator of Scientific Computing

Xerxes Minocher
Mellon Post-Doctoral Fellow in the John B. Hurford
'60 Center for the Arts and Humanities and Visiting
Assistant Professor of Peace, Justice and Human
Rights

Thao Nguyen
Assistant Professor of Computer Science

David Wonnacott
Professor of Computer Science

Yuxin Zhou
Visiting Assistant Professor of Computer Science

Faculty at Bryn Mawr
Elizabeth Dinella
Assistant Professor of Computer Science

Deepak Kumar
Professor of Computer Science

Aline Normoyle
Assistant Professor of Computer Science

Adam Poliak
Assistant Professor of Computer Science

Dianna Xu
Chair and Professor of Computer Science

Yuxin Zu
Visiting Assistant Professor of Computer Science

Courses
NB: Bryn Mawr courses are described at https://
www.brynmawr.edu/cs/courses

CMSC H105 INTRODUCTION TO COMPUTER
SCIENCE (1.0 Credit)
Alvin Grissom, Suzanne Lindell
Division: Natural Science; Quantitative
Domain(s): C: Physical and Natural Processes
Introduction to the intellectual and software tools
used to create and study algorithms: formal and
informal problem specification; problem solving
and algorithm design techniques; reliability,
formal verification, testing, and peer code review
techniques; program clarity, complexity and
efficiency; functional and imperative paradigms;
associated programming skills. Students must
attend a one-hour weekly lab. Labs will be sectioned
by course professor. Prerequisite(s): May not be
taken by students who have taken any one of HC:
CMSC 104, CMSC 107; BMC: CMSC 110, except by
instructor consent
(Offered: Fall 2024)

CMSC H106 INTRODUCTION TO DATA
STRUCTURES (1.0 Credit)
Sara Mathieson, Suzanne Lindell
Division: Natural Science; Quantitative
Domain(s): C: Physical and Natural Processes
An introduction to the fundamental data structures
of computer science: strings, lists, stacks, queues,
trees, BSTs, graphs, sets and their accompanying
algorithms. Principles of algorithmic analysis and
object reasoning and design will be introduced using
mathematical techniques for the notions of both
complexity and correctness. More practical issues,

https://www.brynmawr.edu/cs/courses/
https://www.brynmawr.edu/cs/courses/

6 Computer Science

such as memory management and hashing, will
also be covered. The programming language used
to illustrate and implement these concepts will be
able to support functional, imperative and object-
oriented approaches. Emphasis will be placed on
recursive thinking and its connection to iteration.
Students must attend a one-hour weekly lab. Labs
will be sectioned by course professor. Prerequisite(s):
CMSC 105 (or 110 or 113 at Bryn Mawr) or instructor
consent; may not be taken by students who have
taken any one of HC: CMSC 104, CMSC 107; BMC:
CMSC 206, CMSC 151, except by instructor consent
(Offered: Fall 2024, Spring 2025)

CMSC H107 INTRODUCTION TO COMPUTER
SCIENCE AND DATA STRUCTURES (1.0 Credit)
Suzanne Lindell
Division: Natural Science; Quantitative
Domain(s): C: Physical and Natural Processes
An accelerated treatment of CMSC 105/106 for
students with significant programming experience.
Reviews programming paradigms, while focusing
on techniques for reasoning about about software:
methodical testing, formal verification, code reviews,
other topics as time permits. Includes lab work.
Prerequisite(s): CMSC104 or instructor consent, or
placement by CS faculty, based on CS placement
test. If you are interested in CMSC 107, you should
preregister for the CMSC 105 section at the same
time and take the placement test by the deadline,
typically Wednesday before classes start; may not
be taken by students who have taken any one of HC:
CMSC 105, CMSC 106; BMC: CMSC 206, except by
instructor consent
(Offered: Fall 2024)

CMSC H208 SPEECH SYNTHESIS AND
RECOGNITION (1.0 Credit)
Jane Chandlee
Division: Natural Science; Symbolic Reasoning
Domain(s): C: Physical and Natural Processes
An introduction to the methodologies used in the
automated recognition and synthesis of human
speech, focusing on Hidden Markov Models in
recognition and unit selection in synthesis. Students
will get hands-on experience with implementing
the various components of these systems to better
understand the techniques, challenges, and open
areas of research. Crosslisted: Computer Science,
Linguistics Prerequisite(s): LING 204, CS105 and
106 OR CS107 OR BMC 110 and 206 OR instructor
consent

CMSC H222 SCIENTIFIC COMPUTING:
CONTINUOUS SYSTEMS (1.0 Credit)
Rebecca Everett
Division: Natural Science; Quantitative
Domain(s): C: Physical and Natural Processes

A survey of major algorithms in modern scientific
computing, with a focus on continuous problems.
Topics include numerical differentiation and
integration, numerical linear algebra, root-
finding, optimization, Monte Carlo methods, and
discretization of differential equations. Basic ideas of
error analysis are presented. Regular computer work
in class introduces students to the software package
Matlab, in which the algorithms are implemented
and applied to various problems in the natural and
social sciences. Crosslisted: Mathematics, Computer
Science Prerequisite(s): Math 121

CMSC H231 DISCRETE MATHEMATICS (1.0
Credit)
Steven Lindell
Division: Natural Science; Quantitative
Domain(s): C: Physical and Natural Processes
An introduction to discrete mathematics with strong
applications to computer science. Topics include set
theory, functions and relations, propositional logic,
proof techniques, difference equations, graphs, and
trees. Co-requisite(s): CMSC 105, 107, or B110 or
B113 or instructor consent
(Offered: Fall 2024, Spring 2025)

CMSC H245 PRINCIPLES OF PROGRAMMING
LANGUAGES (1.0 Credit)
Division: Natural Science
Domain(s): C: Physical and Natural Processes
Study of the design and implementation of
modern programming languages: lexical and
syntactic analysis; scoping mechanisms; run-
time environments; implementation of structured,
functional, object-oriented, and concurrent
programming languages. Lectures cover theoretical
foundations of language design and implementation;
labs provide opportunities to both use and
implement language features. Prerequisite(s):
CMSC 106, or 107 or 206, and CMSC/Math 231 (or
instructor consent)

CMSC H251 PRINCIPLES OF COMPUTING
SYSTEMS (1.0 Credit)
Staff
Division: Natural Science
Domain(s): C: Physical and Natural Processes
What actually happens when you hit "run", after
writing your program? This course introduces the
elements of hardware and language/O.S. software
that execute a program, serving as a foundation
for later work in these areas, and providing insights
into computing efficiency that may be important
to a wide range of programmers. Includes weekly
lab exercises, on principles covered in lecture, and
details from lecture and self-teaching (according to
resource-use principles presented in the course).
Pre-requisite(s): Both introductory CS (CMSC H106,

Computer Science 7

H107, or B151) and CMSC 231, with the latter
allowed as co-requisite (Note that CMSC 223 and
251 cover substantially the same material, and thus
students may not take both);
(Offered: Fall 2024, Spring 2025)

CMSC H260 FOUNDATIONS OF DATA
SCIENCE (1.0 Credit)
Sara Mathieson, Sorelle Friedler
Division: Natural Science
Domain(s): C: Physical and Natural Processes
This course will introduce students to the principles
of learning from data, including basic modeling,
applied linear algebra, probability, statistics,
and visualization. The lab component will focus
on implementation and analysis in Python. Pre-
requisite(s): MATH 105 or equivalent, CMSC H106/
CMSC B151 (Data Structures), corequisite
CMSC H231 (Discrete Math), or permission of the
instructor.
(Offered: Fall 2024, Spring 2025)

CMSC H265 CRITICAL STUDY OF DATA AND
ALGORITHMS (1.0 Credit)
Xerxes Minocher
Division: Social Science
Domain(s): B: Analysis of the Social World
This class focuses on the social impact of data
and algorithms. Students will be introduced to 1)
what are data and algorithms, 2) how data and
algorithms intersect with problems of peace, justice,
and human rights, especially in terms of social
inequality, 3) how to critically assess and challenge
data and algorithms, and 4) the role of individual and
collective action in responding to relevant problems.
No prior experience with programming, data, or
algorithms required. Crosslisted: CMSC, PEAC Lottery
Preference: PJHR concentrators

CMSC H340 ANALYSIS OF ALGORITHMS (1.0
Credit)
Steven Lindell
Division: Natural Science; Quantitative
Domain(s): C: Physical and Natural Processes
Qualitative and quantitative analysis of algorithms
and their corresponding data structures from a
precise mathematical point of view. Performance
bounds, asymptotic and probabilistic analysis,
worst case and average case behavior. Correctness
and complexity. Particular classes of algorithms
such as sorting searching will be studied in detail.
Crosslisted: Computer Science, Mathematics
Prerequisite(s): CMSC 106 or 107 or B206, and 231,
or instructor consent
(Offered: Fall 2024)

CMSC H345 THEORY OF COMPUTATION (1.0
Credit)
Staff
Division: Natural Science
Domain(s): C: Physical and Natural Processes
Introduction to the mathematical foundations of
computer science: finite state automata, formal
languages and grammars, Turing machines,
computability, unsolvability, and computational
complexity. Attendance at the weekly discussion
section is required. Crosslisted: Computer Science,
Mathematics Prerequisite(s): (CMSC 106, 107, 151,
or 206) and CMSC 231, and junior or senior standing,
or instructor consent
(Offered: Spring 2025)

CMSC H350 COMPILER DESIGN (1.0 Credit)
David Wonnacott
Division: Natural Science
Domain(s): C: Physical and Natural Processes
An introduction to compiler design, including the
tools and software design techniques required for
compiler construction. Students construct a working
compiler using appropriate tools and techniques
in a semester-long laboratory project. Lectures
combine practical topics to support lab work with
more abstract discussions of software design and
advanced compilation techniques. Prerequisite(s):
CMSC H251 or CMSC B223; concurrent enrollment
in this and two other CMSC lab courses requires
instructor consent

CMSC H356 CONCURRENCY AND CO-DESIGN IN
OPERATING SYSTEMS (1.0 Credit)
John Dougherty
Division: Natural Science
Domain(s): C: Physical and Natural Processes
A practical introduction to the principles of shared-
memory concurrent programming and of hardware/
software co-design, which together underlie
modern operating systems; includes a substantial
laboratory component, currently using Java's high-
level concurrency and the HERA architecture.
Prerequisite(s): CMSC 251 or B223 or H240;
concurrent enrollment in this and two other CMSC
lab courses requires permission of the instructor
(Offered: Spring 2025)

CMSC H360 MACHINE LEARNING (1.0 Credit)
Alvin Grissom
Division: Natural Science; Quantitative
Domain(s): C: Physical and Natural Processes
To explore both classical and modern approaches,
with an emphasis on theoretical understanding.
There will be a significant math component (statistics
and probability in particular), as well as a substantial
implementation component (as opposed to using
high-level libraries). However, during the last part of

8 Computer Science

the course we will use a few modern libraries such
as TensorFlow and Keras. By the end of this course,
students should be able to form a hypothesis about
a dataset of interest, use a variety of methods and
approaches to test your hypothesis, and be able to
interpret the results to form a meaningful conclusion.
We will focus on real-world, publicly available
datasets, not generating new data. Prerequisite(s):
CMSC 260 or instructor consent
(Offered: Spring 2025)

CMSC H364 COMPUTATIONAL BIOLOGY (1.0
Credit)
Sara Mathieson
Division: Natural Science
Domain(s): C: Physical and Natural Processes
This course introduces foundational algorithms that
have become essential for learning from biological
data. With the genome sequencing revolution, it
has become easier and cheaper to obtain genetic
data, but often challenging to store, analyze, and
make sense of this data. These questions have
driven new algorithm development and repurposed
existing algorithms for biology. We will study these
algorithms from a variety of angles, including
theory, implementation, application, biological
interpretation, and communication of results. Pre-
requisite(s): CS260 "Foundations of Data Science
Lottery Preference: 1. senior CMSC majors; 2. junior
CMSC majors; 3. senior CMSC minors; 4. junior
CMSC minors; 5. Scientific Computing concentrators;
6. senior LING majors; 7. junior LING majors; 8.
other seniors; 9. other juniors; 10. sophomores; 11.
everyone else
(Offered: Fall 2024)

CMSC H394 ADVANCED TOPICS IN
THEORETICAL COMPUTER SCIENCE: MATH
FOUNDATIONS OF MACHINE LEARNING (1.0
Credit)
Division: Natural Science
Domain(s): C: Physical and Natural Processes
A 300-level course on the mathematical foundations
of computer science, with the particular topic(s)
varying each time it is offered. Fall 2023: An
introduction to the mathematical principles behind
modern machine learning algorithms. Covers
advanced topics in linear algebra, vector calculus,
probability theory, and optimization, with a particular
focus on their relevance to machine learning tasks.
We will also discuss various practical applications.
Crosslisted: Mathematics, Computer Science.
Prerequisite(s): MATH 121 and 215, or instructor
permission

CMSC H395 ADVANCED TOPICS IN COMPUTER
SYSTEMS: TYPE-THEORETIC FOUNDATIONS FOR
RELIABLE SOFTWARE DESIGN (1.0 Credit)
Staff
Division: Natural Science
Domain(s): C: Physical and Natural Processes
Software reliability is of paramount importance in
critical applications, like smart grids, online banking
and automated life-support systems. Errors in
software that supports such applications can lead
to damaging consequences, like loss of life and
property. Type systems provide an effective way to
reduce such errors, thereby making the software
more reliable. In this course, we shall dive into the
foundations of type systems and see how they
help us design reliable software. In particular, we
shall study a foundational type system called the
Simply-Typed Lambda-Calculus and discuss how
it can be extended to design software that can be
used reliably in critical applications. Prerequisite(s):
CMSC 106/151/107 and CMSC 231, or permission of
instructor

CMSC H396 ADVANCED TOPICS IN MACHINE
LEARNING: DEEP LEARNING FOR COMPUTER
VISION (1.0 Credit)
Division: Natural Science
Domain(s): C: Physical and Natural Processes
Content varies by semester; course may sometimes
have a specific subtitle, but normally focuses on
machine learning itself or on related content of
importance to students who have completed the
regular machine learning courses. Pre-requisite(s):
CMSC H260 and either CMSC H360 or CMSC H325
Lottery Preference: Senior CMSC majors; other CMSC
majors; others

CMSC H399 SENIOR THESIS (1.0 Credit)
Steven Lindell
Division: Natural Science
Fall seminar required for seniors writing theses,
dealing with the oral and written exposition of
advanced material. Lottery Preference(s): Senior
standing
(Offered: Fall 2024)

CMSC H480 INDEPENDENT STUDY (1.0 Credit)
Division: Natural Science
Independent study, supervised by a member of
the Computer Science department. Prerequisite(s):
Instructor consent
(Offered: Fall 2024)

